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SECTION 1

STRESS RATES IN CONTINUUM MECHANICS AND COMPUTER CODES

The necessity of paying careful attention to stress rates in the

theory of mechanics of a continuous medium is illustrated by a simple

example: Suppose a body undergoes rigid body motion (rotation and

translation) without stretching, i.e.,

D..- 1 --I =v (1
jLx j

where x = position, v = velocity and D is the rate-of-deformation

tensor. Then, at every point in the body, in general, the time

derivative of the stress tensor is constant only in a frame of refer-

ence attached to the body, i.e., a rotating frame. In other words,

_= 0 (2)

In this case of rigid body motion, the quantity

- W W (3)=J - -= = =

actually is = 0; here W is the spin tensor:

W.-2 a~ x (4)

The quantity j is called the Jaumann stress rate, and is one of

an infinite family of stress rates which satisfy the principle of
- _iL-

objectivity, or frame indifference. In addition to these objective

stress rates, other objective tensor quantities are D, scalars, and

% .
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the so-called Rivlin-Ericksen tensors; examples of non-frame-indif-

ferent tensor quantities are W, v and c. For a discussion of frame-

indifference, see [1). The objective stress rate typically appears in

a constitutive relation of the form

~i =c j k - k~ (5)

where C is the elastic constitutive tensor and DP the plastic strain

rate.

Stress rates which are closely related to the Jaumann rate and

which have appeared in the literature are the Cotter-Rivlin rate:

0 
0a CR aJ + D + or D (6)

the Oldroyd rate:

0 - ( D) (7)

and the Truesdell rate:
'"= qO +  a t~r D (8)T =0

These rates are defined in terms of tensor quantities evaluated in the

current material configuration (one point tensors), and are easy to

incorporate in either an Eulerian or Lagrangian computer code. An

objective stress rate which is gaining popularity in Lagrangian codes

is the Green-Naghdi rate:
.4.

0 0, gN = =  = Q o= o==1 (9)

where A T

and R is the proper-orthogonal rotation tensor in the polar decomposi-

tion of the deformation gradient:

2
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where
F. j 8x. /8X (12)

Here X is the position of the particle, currently at x, in the

undeformed body; F is a so-called two point tensor. It is easily

seen that the evaluation Of =6N requires "keeping books" on the

original position of each material point in the continuum, and while

feasible in Lagrangian codes would be considerably more complicated in

an Eulerian context.

In [2] it is shown that of the Jaumann, Dldroyd, Cotter-Rivlin and

Truesdell rates, only the Jaumann rate gives a linear stress-strain

response for a hypoelastic body of grade zero undergoing simple exten-

sion, i.e., for

0, 0
D =0 (13)

where and E are functions of time (see Figure 1). In addition, it

is shown in [3] that of the Jaumann, Oldroyd, Cotter-Rivlin and

Truesdell stress rates, only the Jaumann rate has the property that

when it vanishes the stress invariants are stationary.

However, it is shown in [4] that the Jaumann rate suffers a

serious deficiency: consider a linear elastic medium undergoing pure A

rectilinear shear (plane strain), with

0 a/2

- 0 a/2 01P
W [-a/2 0 (15

3
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Figure 1. The constitutive relations for a hypoelastic body of grade zero

undergoing simple extension for Poisson ratio =1.4).
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and obeying the constitutive relation

= I tr D 2#D (16)

where X and pa are the Lame' constants and I is the identity tensor,

with stress and strain equal zero initially, and a = constant. The

governing equations are then

11-a o12 0 (17a) ''"

11 12r

-1 a ('22 - ..1  A' (17b)

+2 2 +a 1 2 = 0 (17c)

33 = 0 (17d)

which have the solution (for the above initial conditions)

a1 2 = psin at (18a)

o,,= (1 - cos at) (18b)

U2 2  -0 11  (18c)

o33 0 (18d)

The sinusoidal variation of stress is clearly physically unreasonable.

On the other hand, it is shown in [4] that the use of =GN instead of

_j in (16) gives a monotonic behavior of stress for this problem

(Figure 2). This fact has led to the implementation of the Green-

Naghdi rate in Lagrangian codes such as NIKE2D, DYNA2D and HONDO.

5,
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2.0 GREEN-F4AGHDI
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Strain, e/2

Figure 2. A comparison between the shear stress on a hypo-elastic material
in a simple, rectilinear shear using the Green-Naghdi and the
Jaiumann stress rates.
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Consider the above model problem of rectilinear shear with a

stress rate of the form

W: W +a( DDa) +*fl etr D (

where a and are constants. Note that the Cotter-Riviin, Oldroyd and

Truesdell rates are included in this form. For this particular

problem the governing equations are

a 11 + (a -1) a a1 2 =0 (20a)

02 ![(a.+ 1)a all (a -')a a'22j # ~a (20b)

12 22(2

22 +(a.+1)ao -2 0(2c

a33 (20d)

Thus

a (a - 1)(a +1)a 2 a1 (21)

For the case (a -1)(a + 1) =0 the solution is

or 12 #a t (22a)

11

= 2~2(a = 1)(2b

2 2

or =- t(a =1) (22c)

-0 (a -1)

7



For the case (a - 1)(a * 1) > 0 the solution is

= ,/[,,/(a+ .)1 - ooh[,- 1)(a + 1)]1/2 at)] (23b)

a 22= [,/ - 1][1- cosh[ - 1)(a. +1)]1,2 a t)] (23 )

and for the case (a - 1)(a + 1) ( 0 the solution is

a12 = {,/[- (a -1)(a 1)]1/2) s in ([ a- 1)(a , 1)]1/ at' ) (24a)

or 11= [,/.(a + 1 [ - cos{[- (a - 1)(a - 1)1/ at)] (24b)

22 = /C )- ][I - cos{[- (a - 1)(a + )1/2 at)] (24c)

In all cases, O33 = 0. All of the above solutions (22-24) have terms

which are exponentially growing, sinusoidal (non-monotonic) or of

order t2 , all of which seem physically unreasonable.

However, the departure from "reasonable" behavior in those solu-

tions occurs only after the deformation is very large, i.e., after the

shear strain becomes of order unity. For metals and geologic mate-

.', rials, plastic failure occurs long before this point, so it is useful

to investigate this problem in an elastic-plastic context. Suppose

the governing equations are the above in the elastic regime, with the

_- Jaumann stress rate, and, in the plastic regime, the associated flow

rule

DP = A S (25)

8



wi where Dp is the plastic strain rate:

2_=D e  Dp  (26)

where De is the elastic strain rate, and

j=XI tr De  2# e (27)

with yield function

f S.. S.. y2 (28)2 = ij 'J -3 (8

where Y is the (constant) stress difference in compression for a

von Mises material and S is the stress deviator:

S. . (29)ij i - 3 ij kk

This is the von Mises failure surface and the Prandtl-Reuss flow rule.

In the (initial) elastic solution, J2 ' = 1/2 Sij Sij reaches a maximum

at dimensionless time at = Yr, and we suppose plastic failure occurs

before this point. Subsequently, as long as the material is on the

. yield surface, the governing equations are

a1 1 -a a 12 = -2# A S11 (30a)

a12 + a (a11 - 02 2 ] = ua - 2j A S12 (30b)

22 + a o12 = - 2# A $22 (30c)

033 = 2# A + S22) (30d)

Adding (30a), (30c) and (30d), we obtain

11 + 
2 2 + j33 =tr (31)_ o

* 9



and since at the end of the elastic solution, tro = 0, we have also

for the plastic solution tr a = 0, so that o = S.

Now

.2 = 12 + $222 + S122 + S1 S 22 (32)

~1 y2

3

so that

11112Sll 1 2S22 22 + 2S12 12 + S11 22 + $22 11 = 0 (33)

which gives

- 41 A (S1 
2  + S22

2 + S122 + S1 S22 + 2# a S12 0 (34)

so that

A = 3a S12/2Y
2  (35)

Also,
.11 2 - 2# A (Sl 1 S 22)  (36)

- y2 A (11 + $22) S12

Y

Since S = - S22 at the end of the elastic solution, (36) is satis-

fied thereafter if S11 = - S22, so that the governing equations in the

plastic flow regime become

911 - a S12 - 3a 2 (37a)

912 + a S 11 = #a - 3a # (37b)
12 S122

,11 = - (37c)

S 33 = 0 (37d)

*If a steady state exists for the equations (37), it is

Sll = (38a)

10

~ ~'A.



i-.

$ L2 = - L2]1 (38b)

so that for a steady state to exist, we must have

Y _ 31/2 A (39)

The character of the solution is as follows: if: Y _ 121/2 1 the

elastic solution (18) persists forever. If Y < 121/2 /, the elastic

solution holds until dimensionless time

at °  cos (40)

at which time

S1 1 (to) = , (41a)

S1 2 (to) = Y 1 - Y/121/2 (41b)

If Y - 31/2 /#, the solution asymptotes to (38); otherwise the solution

oscillates between the elastic and plastic flow regimes. This has

been verified by numerical solution of (37). Figure 3 shows the solu-

tion for the case Y = = 100 kb; here S1 2 (0)/S 12 (to) = 0.85. In the

case Y = #/10 (see Figure 4), S12 (w)/S1 2 (to) = 0.9987. In all cases

where a steady state exists, S11 (0) = 2S1 1 (to).

These results indicate that for real materials with Y < <, the L

Jaumann stress rate should be adequate.

g
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